

Abstracts

Toroidal Resonators and Waveguides of Arbitrary Cross Section

F. Cap. "Toroidal Resonators and Waveguides of Arbitrary Cross Section." 1981 Transactions on Microwave Theory and Techniques 29.10 (Oct. 1981 [T-MTT]): 1053-1059.

After introducing a new method to solve Maxwell's equations using a complex electromagnetic field vector F , a rotational coordinate system ξ , Θ , ψ is introduced. In this coordinate system, the field vector components F_{ξ} , F_{Θ} may be expressed by F_{ψ} . This component can be obtained from a two-dimensional Helmholtz equation. Specifying ξ , Θ by cylindrical coordinates r , z the complex Maxwell equation $\text{curl } F = \gamma F$ is solved for the axisymmetric case ($\partial/\partial r \psi = 0$) and for the nonsymmetric case. The differential equations for magnetic field lines are solved and surfaces on which the normal component of B and the tangential components of E vanish are recognized as metallic walls of toroidal resonators of various arbitrary cross sections. In the Appendix the results of the new method are compared with well known results for circular cylindrical waveguides.

[Return to main document.](#)